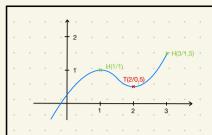
EXTREMPUNKTE



Als Extrempunkt bezeichnet man den höchsten / tiefsten Punkt eines Schaubilds

Bsp.: $f(x) = e^x \cdot (x^2 + 1)$

2 mal Ableiten: $f'(x) = e^x \cdot (x^2 + 1) + e^x \cdot (2x)$ = $e^x (x^2 + 2x + 1)$

$$f''(x) = e^{x}(x^{2} + 2x + 1) + e^{x} \cdot (2x + 2)$$
$$= e^{x}(x^{2} + 2x + 1) + e^{x} \cdot (2x + 2)$$

f' Nullstellen: $e^x \cdot (x^2 + 2x + 1) = 0$

$$x1/2 = -2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot 1} = \frac{-2 \pm 0}{2}$$

 $x1 = -1$

x in f" einsetzen:

$$f''(x) = e^{-1}((-1)^2 + 4 \cdot (-1) + 3) = 0$$

Vorzeichenwechsel:

$$f'(x) = e^{-2}((-2)^2 + 2 \cdot (-2) + 1) = e^{-2} + 1 > 0$$
 Sattelpunkt bei $x = -1$

$$f'(0) = e^0(0 + 2 \cdot 0 + 1) = 2$$

y-Wert:

$$f(-1) = e^{-1} \cdot (-1^2 + 1) = 0 \longrightarrow S(1|1)$$

Anleitung Extrempunkte:

- 1) zweimal ableiten
- 2) erste Ableitung Null setzen
- 3) Ergebnisse aus 2) in die zweite Ableitung einsetzen f " (x) > 0 → TP bei x

$$f''(x) > 0 \longrightarrow HP \text{ bei } x$$

$$f''(x) = 0 \longrightarrow VZW$$
 bei $f'(x)$

4) Y-Wert bestimmen

Notwendige Bedingung:

$$f'(x) = 0$$

Hinreichende Bedingung:

1) Vorzeichenwechsel bei f

2)
$$f''(x) \neq 0$$